4 research outputs found

    Genome-wide association analysis of cystatin-C kidney function in continental Africa

    Get PDF
    BACKGROUND: Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a GWAS for eGFRcys. METHODS: Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using Functional Mapping and Annotation (FUMA). FINDINGS: Three independent lead single nucleotide polymorphisms (SNPs) (P-value 99%. The rs911119 SNP maps to the cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S signalling events. INTERPRETATION: Our study found two previously unreported associated SNPs for eGFRcys in continental Africans (rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa. FUNDING: Wellcome (220740/Z/20/Z)

    Transferability of genetic risk scores in African populations.

    Get PDF
    The poor transferability of genetic risk scores (GRSs) derived from European ancestry data in diverse populations is a cause of concern. We set out to evaluate whether GRSs derived from data of African American individuals and multiancestry data perform better in sub-Saharan Africa (SSA) compared to European ancestry-derived scores. Using summary statistics from the Million Veteran Program (MVP), we showed that GRSs derived from data of African American individuals enhance polygenic prediction of lipid traits in SSA compared to European and multiancestry scores. However, our GRS prediction varied greatly within SSA between the South African Zulu (low-density lipoprotein cholesterol (LDL-C), R2 = 8.14%) and Ugandan cohorts (LDL-C, R2 = 0.026%). We postulate that differences in the genetic and environmental factors between these population groups might lead to the poor transferability of GRSs within SSA. More effort is required to optimize polygenic prediction in Africa

    Transferability of genetic risk scores in African populations

    No full text
    A new study reveals that polygenic scores for lipid traits derived from data of African American individuals have high predictive value in a South African Zulu cohort but are poor predictors in a cohort from Uganda, further highlighting the need to improve polygenic predictions in populations of African ancestries. The poor transferability of genetic risk scores (GRSs) derived from European ancestry data in diverse populations is a cause of concern. We set out to evaluate whether GRSs derived from data of African American individuals and multiancestry data perform better in sub-Saharan Africa (SSA) compared to European ancestry-derived scores. Using summary statistics from the Million Veteran Program (MVP), we showed that GRSs derived from data of African American individuals enhance polygenic prediction of lipid traits in SSA compared to European and multiancestry scores. However, our GRS prediction varied greatly within SSA between the South African Zulu (low-density lipoprotein cholesterol (LDL-C), R-2 = 8.14%) and Ugandan cohorts (LDL-C, R-2 = 0.026%). We postulate that differences in the genetic and environmental factors between these population groups might lead to the poor transferability of GRSs within SSA. More effort is required to optimize polygenic prediction in Africa
    corecore